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ABSTRACT

The conservation of wave action in moving plasmas has been well-known for over half a century.

However, wave action is not conserved when multiple wave modes propagate and coexist close to

degeneration condition (Sound speed equals Alfvén speed, i.e. plasma β ∼ 1). Here we show that

the violation of conservation is due to wave mode conversion, and that the total wave action summed

over interacting modes is still conserved. Though the result is general, we focus on MHD waves and

identify three distinctive mode conversion mechanisms, i.e. degeneracy, linear mode conversion, and

resonance, and provide an intuitive physical picture for the mode conversion processes. We use 1D

MHD simulations with the Expanding Box Model to simulate the nonlinear evolution of monochromatic

MHD waves in the expanding solar wind. Simulation results validate the theory; total wave action

therefore remains an interesting diagnostic for studies of waves and turbulence in the solar wind.
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1. INTRODUCTION

The heliosphere is permeated by the solar wind, a

supersonic and super-Alfvénic plasma flow originating

from the solar corona, and continuously expands into the

interplanetary medium (Parker 1958; Velli 1994). Since

the beginning of in situ observations, it has been con-

firmed by various studies (Coleman 1967, 1968; Belcher

1971; Belcher & Davis 1971) that the interplanetary

space is filled with Alfvénic MHD turbulence and com-

pressive fluctuations like the Pressure Balanced Struc-

tures (PBS) (Marsch 1991; Tu & Marsch 1995). Over

the years, numerous studies have been conducted on

the Alfvénic fluctuations in the solar wind, showing

that interplanetary Alfvén waves are ”Arc Polarized”

or ”Spherically Polarized” (Tsurutani et al. 1994; Riley

et al. 1995; Tsurutani et al. 1997; Bale et al. 2019; Ten-

erani et al. 2021), kinetic in Nature (Tsurutani et al.

2018), and exhibit rich nonlinear effects (Hollweg 1971;

Tsurutani et al. 2018; Stefani et al. 2021). On the other

hand, magnetosonic waves are more scarce, with some

exceptions including in at the upstream of interplan-

etary shocks (Tsurutani et al. 1983), which are likely
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generated locally by the instabilities associated with up-

stream beams of energetic ions; proton cyclotron waves

generated locally by the kinetic dissipation of the non-

linear Alfvén wave (Tsurutani et al. 2002), which in the

low frequency limit becomes slow magnetosonic waves;

and in the solar corona [see e.g. Ofman et al. (1999);

Pascoe et al. (2013); Yang et al. (2015)] Note however,

with the plane-wave assumption, the fluctuations in the

solar wind have non-negligible magnetosonic waves com-

position (Chaston et al. 2020; Zhu et al. 2020). There-

fore, the nonlinear evolution of magnetosonic waves in

the solar wind remains an interesting topic.

Basic to the understanding of the wave evolution in

the highly structured solar wind is the comprehension

of the simpler, isotropic case, i.e., that of evolution in a

plain, isotropic radial expanding wind. This obviously

simple problem is not well-known yet. In the linear case,

only the evolution of Alfvén waves is well understood:

the Wentzel–Kramers–Brillouin (WKB) approximation

predicts a 1/R decrease of the specific energy (Whang

1973). However, the WKB approximation (as well as

the finite frequency approximations, (Heinemann & Ol-

bert 1980; Velli et al. 1991; Velli 1993), are not able

to cope with the mode mixing introduced by the ex-

pansion (Lou 1993a,b,c). The coupling arises because

(a) The characteristics of different degrees of freedom

(Alfvénic, Slow, Fast) depends on the plasma β = 2µ0p
B2
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which changes with distance; (b) The d.c. (background)

magnetic field B0 and wave vector k change both in di-

rection and modulus due to the expansion, which further

modifies the MHD eigenmodes polarization; (c) Differ-

ent modes tend to decay differently with the expansion,

and so does higher degree effects such as wave steepen-

ing, and relative strength of wave-coupling.

Moreover, for an infinitely long monochromatic MHD

wave train propagating in expanding medium, another

underknown effect further complicates the situation.

Contrary to common knowledge, the adiabatic invari-

ant of the wave train (Wave Action) (Whitham 1965;

Bretherton 1968; Dewar 1970) is not well-conserved if

the background conditions evolve close to degeneration

point (Alfvén speed va, Sound speed cs, wave vector ~k,

and background magnetic field ~B0 simultaneously sat-

isfy: va = cs and ~k ‖ ~B0) even in the WKB limit. This

special condition can be easily achieved if the medium

expands, e.g. in the expanding solar wind (see Fig-

ure 1) where the plasma β ∼ 1. This topic has not

been covered thoroughly in past literature, especially for

magnetosonic modes, partially because of their dissipa-

tive nature. Early studies (Jacques 1977; Lou 1993b)

on this subject mainly focused on their WKB evolu-

tion, i.e. a priori assumption of wave action conserva-

tion. Some other studies focused more on predicting the

magnetogravity mode-conversion rate (Zhugzhda 1979;

Zhugzhda & Dzhalilov 1981, 1982a,b; Cally 2001; Mc-

Dougall & Hood 2007a,b, 2009). On the other hand,

the subject of wave action conservation itself is more

of theoretical interest and has only been studied in a

general sense by (Hirota & Tokuda 2010). Therefore, a

thorough study of the evolution of simple MHD waves in

expanding solar wind is still lacking. Our study aims to

provide an intuitive physical picture of the mechanisms

behind the violation of conservation law for infinitely

long monochromatic wave train.

In this study, we propose a simple model to address

the violation of wave action conservation. Our model

shows that the violation is due to wave mode conver-

sion, and that the total of wave action summed over all

interacting modes (Alfvén, Slow, Fast) is a universally

conserved quantity. In addition, we propose three dis-

tinctive mechanisms of the mode conversion, i.e. degen-

eracy, linear mode conversion, and resonance, providing

an intuitive physical picture explaining the mode con-

version process. By generalizing the conservation law

for wave action, our model can serve as an extension of

classical wave action conservation theory.

The rest of this paper is organized as follows: In sec-

tion 2, we start by reviewing the theory for the conser-

vation of wave action in MHD and propose a simple,

intuitive model for wave mode conversion and conserva-

tion of total wave action; in section 3, we present comple-

menting simulation results to substantiate our model; in

section 4, we discuss the bifurcated behaviours of Alfvén

mode and magnetosonic modes; in section 5, we summa-

rize our results.

2. THEORY

In this section we give a brief overview of the concept

of wave action (Whitham 1965; Bretherton 1968; Dewar

1970) with MHD equations, and suggest a possible sce-

nario leads to violation of wave action conservation. And

we propose a simple, intuitive model showing that the

total of wave action summed over all interacting modes

is a universally conserved quantity.

2.1. Wave Action

The Lagrangian density for MHD system is (Lundgren

1963):

L =
1

2
ρU2 − p

γ − 1
− B2

2µ0

(1)

Where ρ, ~U, p, ~B, γ are density, flow velocity, pressure,

magnetic field, and adiabatic gas constant. To study

the perturbation behaviors of this system, we decom-

pose all fields into the background part plus the pertur-

bation part. In this study, we limit the perturbations to

be small compared with background fields. We adopt a

WKB style temporal scale separation (wave frequency

within the MHD regime but much higher than the effec-

tive frequency of expansion time scale). First, expand

the Lagrangian density (L = L0 +L1 +L2 +o(δ2)); Sec-

ond, discard the first-order terms because they average

to zero (both temporally and spatially); Last, keep the

second-order terms [for details, see Dewar (1970)]:

L = L2 =
1

2
ρ0(∆~u)2 − 1

2

(∆p)2

c2sρ0
− (∆ ~B)2

2µ0
(2)

where quantities with subscript ”0” are the background

fields, and quantities with ∆ are the perturbations

(∆f = f − f0, and f0 = 〈f〉). cs =
√
γp0/ρ0 is the

sound speed. To proceed, we need to substitute all per-

turbations with their Fourier-transformed counterpart.

The full ideal-MHD equation set with adiabatic closure
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is:

∂ρ

∂t
+∇ · (ρu) = 0 (3)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+

1

µ0
(∇×B)×B (4)

∂B

∂t
= ∇× (u×B) (5)

∇ ·B = 0 (6)

d

dt

(
pρ−γ

)
= 0 (7)

The displacements of three MHD eigenmodes form an

orthogonal triad, and hence without loss of generality,

we write the flow perturbation of mode M as:

∆~uM = ãMωM êM (8)

After linearization, plug (8) into (3) and (7), we obtain:

∆pM = c2sδρM = ãMc
2
sρ0kM (k̂M · êM ) (9)

and into (5), we obtain:

∆ ~BM = ãMB0kM

[
b̂(k̂M · êM )− (b̂ · k̂M )êM

]
(10)

where ãM is complex amplitude of displacement, ωM
is intrinsic frequency of the wave, ~kM is wave vector,

êM is the unit vector along displacement, and k̂M =
~kM/kM , b̂ = ~B0/B0 are unit vectors of wave vector and

background magnetic field, all of mode M .

Finally we plug (8)-(10) into (2) and temporally or

spatially average it and obtain the averaged Lagrangian

Density L :

LM (ãM ,− ∂tθM ,∇xθM )

=
1

4
ρ0ã

2
M

{
ω2
M − c2sk2

M (k̂M · êM )2

−v2
ak

2
M

[
b̂(k̂M · êM )− (b̂ · k̂M )êM

]2} (11)

where θM (x, t) is the wave phase, hence −∂tθM = ωM
and ∇xθM = ~kM . Note that for Alfvén mode (δρA = 0,
~kA · êA = 0), the Lagrangian density can be reduced to:

LA(ãA,− ∂tθA,∇xθA)

=
1

4
ρ0ã

2
A

[
ω2
A − v2

ak
2
A(b̂ · k̂)2

] (12)

(Whitham 1965; Bretherton 1968) have shown that for

a slowly varying (WKB) wavetrain, the local amplitude,

frequency, and wavenumber are governed by the varia-

tional principle (henceforward we change the notations:

∂tθ → θt and ∇xθ → θx):

δ

∫
L (ã,−θt, θx)dxdt = 0 (13)

subject to infinitesimal variations δã(x, t), δθ(x, t) which

vanish at infinity. Variation with respective to ã yields

(L = ã2L̄ ):

∂L

∂ã
= 2ãL̄ = 0

⇒ L = 0
(14)

which is equivalent to the dispersion relations. Variation

with respect to θ on (13) yields (see Appendix-A for

detailed derivation):

∂

∂t

(
∂L

∂ω

)
− ∂

∂x

(
∂L

∂k

)
= 0 (15)

This is a conservation equation for the quantity ∂L /∂ω

subject to flux −∂L /∂k. Now substitute θ with θM , k

with ~kM , and rewrite ∂x as ∇, we have:

∂

∂t

(
∂LM

∂ωM

)
−∇ ·

(
∂LM

∂~kM

)
= 0 (16)

Considered that the dispersion relations are equivalent

to:

LM = 0 (17)

and the group velocities are:

~vg,M = − ∂LM

∂~kM

/
∂LM

∂ωM
= L~k,M/Lω,M (18)

So that the conservation equation turns into:

∂

∂t

(
∂LM

∂ωM

)
+∇ ·

(
~vg,M

∂LM

∂ωM

)
= 0 (19)

(19) marks the conservation law for wave action den-

sity Lω,M , subject to flux ~vg,ML~k,M . The wave energy

density can be further defined as:

E = ωLω −L

=
1

2
ρ0〈(∆~u)2〉+

1

2

〈(∆p)2〉
c2sρ0

+
〈(∆ ~B)2〉

2µ0

(20)

and consider that for waves with small amplitude L =

0, the wave action density hM for mode M is defined

as:

hM = Lω,M =
EM
ωM

(21)

where EM is the wave energy density and ωM is the in-

trinsic frequency of Alfvén, Slow, and Fast wave respec-

tively. And finally we have the conservation of wave

action for monochromatic waves:

∂

∂t

(
EM
ωM

)
+∇ ·

(
~cM

EM
ωM

)
= 0 (22)



4 Z.-S. Huang et al.

Integrating in space and assuming periodicity at the

boundary, we get:

~M =
EM
ωM

= const. (23)

where EM =
∫
V

EMdν and ~M is the wave action (quan-

tum) for mode M . Note that wave action is the counter-

part of adiabatic invariant for waves in fluid system and

is independent of the detailed description (e.g. MHD or

CGLMHD). The notation ~M is adopted here purposely

because it shares the same dimension with the Planck

constant ~ and possess similar physical meaning.

2.2. Conservation of Total Wave Action: Theory

In the derivation above, a fundamental assumption

is that LA, LS , LF are independent with each other,

which is questionable at degeneration point (cs = va,~k ‖
~B0). At the degeneration point, all three modes (Alfvén,

Slow, Fast) propagate at the same phase velocity, and

hence wave-wave interaction is possible. Detailed anal-

ysis shows that at the degeneration point, there are

three mode-conversion mechanisms: degeneracy, linear

mode conversion, resonance. The first mechanism is de-

generacy of magnetosonic modes: At the degeneration

point, the concept of “Fast” and ”Slow” is ill-defined for

parallel waves, and hence Fast and Slow waves would

be indistinguishable from each other, i.e. an ”iden-

tity crisis”. Passing through the degeneration point,

the originally ”Slow” wave would become ”Fast” wave

due to the adrupt change of the displacement polariza-

tion vector. Note that because this process happens

on the ~k − ~B0 plane, degeneracy is only possible for

magnetosonic modes. The second mechanism is linear

mode conversion [see e.g. Swanson (1998, 2003); Mc-

Dougall & Hood (2007b)]: at the degeneration point,

due to the rapid change of eigenvectors, the projection

of the disturbance on the each of the two magnetosonic

eigenvectors change; Therefore, the initially monochro-

matic magnetosonic mode would be continuously lin-

early transformed to the mix of both slow and fast mode,

until the background conditions evolve to be sufficiently

distant from the degeneration point. The third mecha-

nism is resonance: The linearly polarized Alfvén wave

would resonate at the degeneration layer (cs = va) to

convert the wave energy into sonic modes [see e.g. Holl-

weg (1971); Stefani et al. (2021) and references therein],

which is a candidate for chromosphere heating at the

magnetic canopy [see Hollweg et al. (1982); Bogdan et al.

(2003)]. For all three mechanisms, the mode conversion

processes are transient, and hence dissipation is negligi-

ble. Therefore, for Fast (and Slow) mode, the conversion

process can be illustrated phenomenologically as:

EF
ωr

Degeneracy−−−−−−−−−−−−−−−→
Linear Mode Conversion

E′F
ωr

+
E′S
ωr

EF = E′F + E′S

(24)

where E() and E′() are wave energy before and after de-

generation point respectively, and ωr is intrinsic wave

frequency at the degeneration point. Whereas for Alfvén

mode:

EA
ωr

Resonance−−−−−−→ E′F
ωr

+
E′S
ωr

+
E′A
ωr

EA = E′F + E′S + E′A

(25)

In the conversion process, the total wave energy is con-

servatively reallocated among corresponding degrees of

freedom (eigenmodes), and hence the exchange of wave

action is also conservative. Passing through degenera-

tion point, the wave action for each degree of freedom:

~′M =
E′M
ωM

= const. (26)

would be independently conserved. And hence the total

wave action:

~tot =
∑

M=A,S,F

EM
ωM

=
∑

M=A,S,F

E′M
ωM

= const. (27)

is conserved. In short, we conjecture that for MHD

small-amplitude WKB perturbations, the total of wave

action summed over all interacting modes is a univer-

sally conserved quantity.

3. SIMULATION RESULTS

3.1. Simulation Setup and Diagnostics

We conduct simulations with Expanding Box Model

(EBM) formulated by [Velli et al. (1992), Grappin et al.

(1993); Grappin & Velli (1996)] and implemented by

[Shi et al. (2020)]. The code is pseudo-spectral, using

Fast Fourier Transform to calculate spatial derivatives

and 3rd order explicit Runge-Kutta method to integrate

in time. We do not add explicit viscosity or resistiv-

ity but adopt a numerical filter that adaptively dissi-

pate shocks formed in the simulations. The simulation

setup is illustrated in Figure 1. The simulation domain

is 1D with 256 grid points and comoves with the back-

ground solar wind at the speed of U0 = 400 km/s. For

each run, we initialize the simulation domain with uni-

form background magnetic field ~B0, pointing θ0 w.r.t.

the radial direction, and run the simulation from 0.1

AU to 1.0 AU. Velocity has unit u∗ = 150km/s, length

has unit L∗ = 0.012AU, and number density has unit
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n∗ = 200cm−3, and thus magnetic field has unit of

u∗
√
µ0mpn∗ = 97.25nT, where mp is proton mass. The

adiabatic gas constant is chosen to be γ = 5/3. Dif-

ferent from the regular EBM, the simulation domain in

our model is rotated by an initial angle α with respect

to the radial direction, i.e., the grid points used in this

study are distributed on an axis êx′ such that the angle

between êr (the radial direction) and êx′ is α initially.

As the expansion effect will stretch the plasma volume

in the direction perpendicular to êr, the axis êx′ will ro-

tate away from the radial direction, i.e. α will increase

with time (see Shi et al. (2020) for more details).

We initialize simulations with small amplitude

monochromatic Alfvén, Slow, and Fast wave with same

wavevector ~k, and vary only the initial background mag-

netic field modulus | ~B0|. At each time step, the wave

vector is a priori determined by linear theory [Vlk &

Aplers (1973)], turning gradually towards radial:

~k(t) = (k0x, k0y/a(t), 0) (28)

a(t) = R(t)
R0

= 1 + U0

R0
· t (29)

where a(t) is the expansion factor and R0 = 0.1AU.

Then we extract other background quantities including

ρ0(t), p0(t), and ~B0(t) by averaging over the simulation

domain. It is noteworthy that ~B0(t), per conservation

of magnetic flux, turns gradually away from radial over

time (Parker Spiral):

~B0(t) = (B0x/a(t)2, B0y/a(t), 0) (30)

Given ~k(t) and other averaged background quantities,

we can derive various useful quantities as diagnostics.

The wave energy density is calculated by:

Ew =
1

2
〈ρ〉〈(∆~u)2〉+

〈(∆p)2〉
2〈ρ〉c2s

+
〈(∆ ~B)2〉

2µ0
(31)

where c2s = γ 〈p〉〈ρ〉 , 〈()〉 is the average of () in the simula-

tion domain, and δ() = ()− 〈()〉.
After that we need to decompose the wave energy

into different degrees of freedom (Alfvén, Slow, and Fast

mode). We first decompose the kinetic part of the wave

energy density because the eigen-polarization of δ~u of

the three eigenmodes form an orthogonal triad. And

for small amplitude WKB waves, our discussion in sec-

tion 2 shows that L = 0, which indicates equi-partition

between the kinetic (Ek = 1
2 〈ρ〉〈(∆~u)2〉) and potential

(elastic+magnetic) (Ep+Em = 〈(∆p)2〉
2〈ρ〉c2s

+ 〈(∆
~B)2〉

2µ0
) energy.

Therefore, we can decompose the wave energy density

via:

Ew,(A,S,F ) = Ek,(A,S,F )/Ek ∗ Ew (32)

And with eigen-frequencies ωA,S,F of each mode, we ob-

tain the wave action for each mode:

~A,S,F =

∫
V (t)

Ew,(A,S,F )

ωA,S,F
dν =

Ew,(A,S,F )

ωA,S,F
(33)

where V (t) is the volume of the ”Expanding” simulation

domain at time t and Eω,(A,S,F ) is the integrated wave

energy enclosed by the simulation domain. Finally, we

have the total wave action:

~tot = ~A + ~S + ~F (34)

The conservation of total wave action states that: ~tot =

const., and thus we diagnose each run with the normal-

ized total wave action ~̃tot(t):

~̃tot(t) = ~tot(t)/~tot(0)

= ~̃A(t) + ~̃S(t) + ~̃F (t)
(35)

This is the primary diagnostic for our simulations.

3.2. Conservation of Total Wave Action: Simulation

To prove our conjecture on conservation of total wave

action, the initial conditions are carefully selected so

that the resonance conditions can be satisfied perfectly

or partially in the simulation. Figure 2 shows nine

simulation runs of monochromatic Alfvén, Slow, and

Fast waves with three different initial | ~B0| (hence Alfvén

speed va). All runs are initialized with uniform ~B0 with

δ0 =< ~B0, r̂ > |t=0 = 6◦, and initial wave vector ~k with

α0 =< ~k, r̂ > |t=0 = 12◦, both pointing counterclock-

wise w.r.t. radial r̂ (α =< ~k, r̂ >, δ =< ~B0, r̂ >, θ =<
~k, ~B0 >, also see Figure 1). To understand the evolution

of monochromatic waves, we show in each panel of Fig-

ure 2 the normalized total wave action ~̃tot defined in
(35) and its composition in three different colours: ~̃A
(Alfvén, Blue), ~̃S (Slow, Orange), ~̃F (Fast, Green).

The resonance criteria, cs/va and θ =< ~k, ~B0 > are

shown in the top row, and resonant windows are high-

lighted with red and cyan bars, also overlaid in all panels

to indicate the same periods.

As shown in Figure 1(c), ~B0 turns gradually away from

radial, whereas ~k turns gradually towards radial over

time, and thus with our setup (α0 > δ0), two vectors will

coincide as the wave propagating outwards. The three

different initial | ~B0| are carefully selected to represent

perfect degeneration point passing (cs = va,~k ‖ ~B0 are

perfectly satisfied simultaneously), partial degeneration

point passing (Both cs = va,~k ‖ ~B0 are satisfied, but not

simultaneously), and miss (one of the resonant criteria

is not satisfied), shown respectively in column 1-3 in

Figure 2.
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α

Sun

Lx0

Ly0 Ly0a(t)

α

Lx0

Lx0

t=0

t>0

Sun

R0

R(t)

t=0 t>0

(a)

(b)

(c)

Figure 1. Sketch of the evolution of a plasma volume
advected by a spherical wind with constant speed. (a) Exact
evolution, (b) approximate evolution in the limit of small
angular size (Expanding Box Model), and (c) transformation

of a parallel wave (~k ‖ ~B0) into an oblique wave. ~B0 turns

away from radial, whereas ~k turns towards radial.

Results show that all runs start with conserved wave

action (only one color is presented at a given time step,

vertical intersection), and some of the runs (S1, S2, F1,

F2) subsequently convert to other modes. Specifically,

run S1 passes through the degeneration point perfectly

(overlapping red and cyan overhead bars) at around 0.1

AU and hence converts completely from Slow mode (or-

ange) to Fast mode (green), and vice versa for run F1.

On the other hand, run S2 passes through the degen-

eration point semi-perfectly, and thus run S2 converts

partially from Slow mode to Fast mode, and vice versa

for run F2. Most importantly, all of the four runs, al-

beit having mode conversion, maintain an almost con-

stant total wave action all over the evolution. Especially

for run S2 and F2, after the transient mode conversion

phase, the slow mode and fast mode part of the wave

coexist, and the wave action for both modes are inde-

pendently conserved.

Other runs (A1-A3, S3, F3) present no sign of mode

conversion and therefore maintain a constant total (al-

beit monochromatic) wave action. One may notice that

for runs S1 and S3, the total wave action decreases sig-

nificantly towards the end (R > 0.5 AU). This is due to

dissipation of shock formed via wave steepening.

4. DISCUSSION

In this section we give a short discussion on the sta-

bility of Alfvén wave and the mechanisms of mode-

conversion seen in the magnetosonic modes.

4.1. Stability of Alfvén Wave

As shown in Figure 2, Alfvén wave appears to be more

stable than magnetosonic waves. A simple explanation

to this is that Alfvén wave is a transverse wave and hence

per Burgers’ equation, Alfvén wave does not resonates

with itself. More specifically, the inviscid Burgers’ equa-

tion is written as:

∂~u

∂t
+ ~u · ∇~u = 0 (36)

For Alfvén mode, as a transverse wave, the convective

term is zero:

~u · ∇~u = 0 (37)

Hence no self-resonance is present for Alfvén wave.

Moreover, the displacement vector of Alfvén wave is per-

pendicular to the ~k − ~B0 plane. It is hence extremely

hard for Alfvén wave to convert to the two magnetosonic

modes with linear mode conversion. Therefore, the only

viable mechanism in our setup for Alfvén wave to con-

vert to other magnetosonic modes is through Alfvén res-

onance [Hollweg (1971); Stefani et al. (2021)]. The ef-

fectiveness of the resonance is proportional to both wave

amplitude and interaction time. It is hence very hard for

Alfvén wave to exhibit observable nonlinear effect if the

wave amplitude is small and is propagating in expanding

medium. On the other hand, if we abandon the expan-

sion effects and run the simulation without expansion

effect, or increase the wave amplitude, we may achieve

significant mode conversion for the Alfvén wave. There-

fore, it is interesting to see whether the total wave action
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Figure 2. The evolution of normalized total wave ac-
tion with initial monochromatic Alfvén (A1-A3), Slow (S1-
S3), and Fast wave (F1-F3) in expanding box simulation,
together with resonance/degeneracy condition (V1-V3). All
runs are initialized with δ0 =< ~B0, r̂ > |t=0 = 6◦, α0 =<
~k, r̂ > |t=0 = 12◦, and θ0 = α0 − δ0, varying only | ~B0|. The

evolution of plasma parameters cs/va and θ =< ~B0,~k > are
plotted in the top row with orange and blue lines, and the
region close to resonance are highlighted with overlaid red
and cyan bar on all panels. Rows 2-4 show the radial evolu-
tion of normalized wave actions with different colors, respec-
tively initialized with monochromatic Alfvén, Slow, and Fast
wave. The color in the panels indicate the normalized wave
action for Alfvén/Slow/Fast mode denoted with ~̃A/~̃S/~̃F ,
and they are stacked together, as indicated by dashed lines
(~̃S ,~̃S + ~̃F ), and finally into the normalized total wave ac-
tion ~̃tot.

is a better-conserved quantity than single-mode wave ac-

tion with the presence of significant mode-conversion for

Alfvén wave.

Figure 3 demonstrates two simulation runs, showing

respectively small-amplitude Alfvén wave without ex-

pansion effect (R1), and large-amplitude Alfvén wave

with expansion effect (R2). Simulation results show

that both abandoning expansion effect and increasing

amplitude can induce significant mode-conversion (res-

onance). Moreover, the normalized total wave action

plots (R1, R2) clearly show that, albeit with significant

resonance, the total wave action remains almost con-

stant until shock dissipation intensify.
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Figure 3. The evolution of normalized total wave action
with initial monochromatic Alfvén waves. Run R1: small
amplitude, always resonant, and has no expansion; Run R2:
large amplitude, transient perfect resonant, and has expan-
sion. Resonant conditions are shown in V1/V2. All legends
are identical to Figure 2. The total wave action is conserved
for both runs.

4.2. Magnetosonic Wave Mode Resonance

The mode conversion processes of magnetosonic waves

in Figure 2, panel S2/F2 are significantly different from

the complete mode conversion in panel S1/F1. In fact,

they exemplify two distinct mode conversion mecha-
nisms, i.e. degeneracy and linear mode conversion [see

e.g. Zhugzhda (1979); Zhugzhda & Dzhalilov (1981,

1982a,b); Cairns & LashmoreDavies (1983); Swanson

(1998); Cally (2001); Swanson (2003); McDougall &

Hood (2007b,a) and references therein]. Degeneracy

happens only when degeneration point (cs = va,~k ‖ ~B0)

passing is perfect, and hence is very rare. Linear mode

conversion happens within a small region around the de-

generation point, where the dispersion relation of Slow

and Fast mode coincides, and hence is more universal.

The complete conversion in panels S1/F1 can be sim-

ply explained by the sudden change of the displace-

ment polarization upon passing through the degenera-

tion point, i.e. degeneracy of wave modes. The detailed

evolution of run F1 is shown in Figure 4. Two wave pro-

files at two time steps adjacent to the mode conversion

point are shown for comparison. Before entering the de-
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generation point, the displacement vector’s trajectory

(Lissajous curve) from edge to edge in the simulation

domain (dark dashed close loop, radar plot, panel b) is

parallel to the fast mode displacement polarization (red

arrow); and in the meantime the wave vector (blue ar-

row) and the background magnetic field (orange dashed

arrow) are very closely aligned with each other. Passing

through the degeneration point (see the slight change of

< ~B0,~k > before and after the degeneration point), the

wave profile is hardly modified (panel b/c blue, orange,

green, and red dashed line), but the polarization vec-

tors have an abrupt change (sudden change of red/blue

vectors in panel b/c, radar plot) because the meaning

of ”Fast” and ”Slow” switches at degeneration point,

and hence the projection of the displacement vector’s

trajectory (dark dashed line, radar plot) on the two po-

larization vector (red/blue vectors, radar plot) has an

abrupt change.

For comparison, the detailed evolution of run F2 is

shown in Figure 5. As we can see in panel b and c,

the linearly polarized Fast wave started to convert to

slow mode via linear mode conversion (see panel a in

Figure 5, the growing ratio of orange area (slow mode)

from 0.1 AU and 0.3 AU). Such linear mode conver-

sion happens because around the degeneration point,

the eigen-vectors of magnetosonic modes are changing

rapidly, and therefore the system becomes non-WKB.

The rapid change of the eigen-vectors changes the mix-

ing ratio of slow and fast mode (see the radar plots in

panel b and c, depicting the wave profiles at two time

steps indicated by two red vertical dashed line in panel

a). Subsequently, because of the phase speed difference

between two modes, the Lissajous curve of the wave

change from an linearly polarized wave (thin dashed

black close loop in radar plot, panel b) to a circularly po-

larized wave (oval-like dashed black close loop in radar

plot, panel c). Note that the oval-like Lissajous curve

indicates that the two wave modes have similar frequen-

cies, further confirming the mode conversion process is

linear (or else would transport wave energy to higher

wave number).

5. SUMMARY

Half a century ago, the theory of wave action con-

servation is devised to describe the nonlinear evolution

of WKB waves [see Whang (1973), Whitham (1965),

Bretherton (1968), Dewar (1970)]. However, the classi-

cal theory fails to predict the mode-conversion happen-

ing close to the MHD degeneration point (cs = va,~k ‖
~B0). In this paper, we have shown that although mode

conversion violates the conservation of wave action for

infinitely long monochromatic MHD wave trains prop-
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Figure 4. The detailed evolution of run F1 with wave
profile is shown here. Panel a is identical to panel F1 in
Figure 2; x axis is radial distance to sun (R [AU]). Panel
b and c are the wave profile at two time steps indicated
by the two red, vertical dashed line in panel a; x axis is
grid points. The legends of panel a are identical to legends
in Figure 2. The blue, orange solid line in panel b and c
are flow speed fluctuation (displacement) amplitude along x’

(parallel to ~k) and y’ (coplanar with ~k and ~B0) direction;
green solid line is the normalized magnetic fluctuation am-
plitude; and the red dashed line is the density fluctuation
amplitude. In the radar-like arrow plot, all arrows are unit
vectors: the light blue arrow is the wave vector ~k; the orange
dashed arrow is the background magnetic field ~B0; the red
and deep blue arrows are unit vectors of displacement of Fast
and Slow mode respectively. The black dashed closed loop
is the trajectory of displacement from edge to edge in the
simulation domain (trajectory of the blue and orange line in
corresponding wave profile panel on the left). The texts in
panel b and c are important information of the time frame,
where ηS/F = εw,S/F /(εw,S + εw,F ) is the ratio of the wave
energy belongs to either Slow or Fast mode. For example, in
panel b, the black dashed closed loop is parallel to the red
arrow, indicating that the wave is pure fast mode; whereas in
panel c, the loop is parallel to the blue arrow, indicating that
the wave is pure slow mode. By checking both the radar plot
and the value of ηS/F , from panel b to c, we clearly witness
a mode degeneracy of magnetosonic modes.

agating in the expanding solar wind, the total of wave

action summed over all interacting modes (Alfvén, Slow

and Fast) remains a universally conserved quantity. 1D

MHD simulation with the Expanding Box Model (EBM)

[Velli et al. (1992), Grappin et al. (1993), Grappin &

Velli (1996), Shi et al. (2020)] demonstrate this and fur-

ther reveal that there are three distinct mode conversion

mechanisms: degeneracy, linear mode conversion and

resonance. A simple physical picture is that, due to the

expansion of the medium, wave vector ~k turns towards

radial, and background magnetic field ~B0 turns away

from radial per Parker Spiral. Hence with special setup,

when the two vectors align with each other and in the

mean time sound speed cs and Alfvén speed va becomes
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Figure 5. The detailed evolution of run F2 with wave
profile shown. Panel a is identical to panel F2 in Figure 2.
All legends are identical to Figure 4. Note that the black
dashed loop in panel b and c are trajectory of displacement
vector from edge to edge in the simulation domain. In panel
b, the loop is mostly parallel to the red arrow, indicating
that the wave is mostly pure fast wave (also see the time
step indicated by the first red, vertical dashed line in panel
a, is almost all green); in panel c, the loop has projection on
both red and blue vector, indicating that the wave is a mixed
slow and fast wave (also see the time step indicated by the
second red, vertical dashed line in panel a, is mixed green
and orange). Moreover, by comparing the value of ηS/F in
panel b and c, we obviously witness a magnetosonic linear
mode conversion from panel b to c.

nearly identical, all three mode conversion mechanisms

become possible.

Degeneracy is due to the fact that the concepts of

”Fast” and ”Slow” become ill-defined at the degenera-

tion point for parallel waves, and hence passing through

the degeneration point, the originally ”Slow” wave can

become ”Fast” due to the abrupt change of the displace-

ment polarization vector (see Figure 4). Therefore, de-

generacy can only happen for magnetosonic modes, and
is not applicable to Alfvén mode. Linear mode con-

version on the other hand is more universal for magne-

tosonic waves [see e.g. Zhugzhda (1979); Zhugzhda &

Dzhalilov (1981, 1982a,b); Cally (2001); McDougall &

Hood (2007a,b, 2009) for similar linear mode conversion

for magnetogravity waves at the magnetic canopy in so-

lar chromosphere]. Finally, resonance can happen for

Alfvén mode, where the well-known Alfvén resonance

can generate secondary Slow and Fast waves [see Holl-

weg (1971) or Appendix-A, and simulation in Figure 3].

In short, the mode conversion process and the conserva-

tion of total wave action can be summarized as:

EM
ωr

Degeneracy−−−−−−−→
Resonance

∑
M

E′M
ωr

(38)

where EM and E′M are wave energy before and after

resonance/degeneracy of mode M, and ωr is resonance

frequency.

We believe our proposed physical model is generally

applicable to any fluid system because: (a) wave ac-

tion is a universal concept, regardless of system descrip-

tion; (b) our mathematical description on conservation

of total wave action is general, without concerning the

details of MHD; (c) All three mode-conversion mecha-

nisms are universal phenomena regardless of fluid de-

scription. Hence by providing simple, intuitive physical

picture for mode conversion, our model generalizes the

classical theory of wave action conservation.

APPENDIX-A

Here for completeness, we give a short derivation on

the variation principle for wave action. For a slowly

varying (WKB) wavetrain, the dominant local ampli-

tude, frequency, and wavenumber are governed by the

variational principle:

δ

∫
L (ã,−θt, θx)dxdt = 0

subject to infinitesimal variation δθ(x, t) which vanish

at infinity. Variation with respect to θ yields:∫ [
∂L

∂θt
δ

(
∂θ

∂t

)
+
∂L

∂θx
δ

(
∂θ

∂x

)]
dxdt

=

∫ [
∂L

∂θt

(
∂δθ

∂t

)
+
∂L

∂θx

(
∂δθ

∂x

)]
dxdt

=

∫ [
∂

∂t

(
∂L

∂θt
δθ

)
+

∂

∂x

(
∂L

∂θx
δθ

)
− ∂

∂t

(
∂L

∂θt

)
δθ − ∂

∂x

(
∂L

∂θx

)
δθ

]
dxdt

=

∫
∂L

∂θt
δθ

∣∣∣∣
t

dx︸ ︷︷ ︸
0

+

∫
∂L

∂θx
δθ

∣∣∣∣
x

dt︸ ︷︷ ︸
0

+

∫ [
∂

∂t

(
∂L

∂ω

)
− ∂

∂x

(
∂L

∂k

)]
δθdxdt

Hence finally we obtain:

∂

∂t

(
∂L

∂ω

)
− ∂

∂x

(
∂L

∂k

)
= 0

APPENDIX-B

Following equation (13) in [Hollweg (1971)] , for a

monochromatic linearly polarized Alfvén wave propa-

gating parallel to ~B0, the secondary density fluctuation

is driven by the non-uniform magnetic pressure:

∂2δρ

∂t2
− c2s

∂2δρ

∂x2
=

∂2

∂x2

(
δB2

z

2µ0

)
(39)
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where δBz(x, t) = B̃z cos[k(x − vat)], and δρ is density

fluctuation induced by first order Alfvén wave. When

cs 6= va the usual particular solution to this equation

is:

δρp(x, t) = − B̃2
z

4µ0(c2s − v2
a)
· cos[2k(x− vat)] (40)

However, cs = va is a degeneration point and in this

case, equation (40) has the particular solution:

δρp,r(x, t) =
B̃2
zk

4µ0va
· t sin[2k(x− vat)] (41)

which grows linearly in time. The resonance strength

is proportional to interaction time (time satisfying the

resonance condition) and wave amplitude.
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